On finite commutative loops which are centrally nilpotent

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Abelian Hopf Galois structures and finite commutative nilpotent rings

Let G be an elementary abelian p-group of rank n, with p an odd prime. In order to count the Hopf Galois structures of type G on a Galois extension of fields with Galois group G, we need to determine the orbits under conjugation by Aut(G) of regular subgroups of the holomorph of G that are isomorphic to G. The orbits correspond to isomorphism types of commutative nilpotent Fp-algebras N of dime...

متن کامل

Which elements of a finite group are non-vanishing?

‎Let $G$ be a finite group‎. ‎An element $gin G$ is called non-vanishing‎, ‎if for‎ ‎every irreducible complex character $chi$ of $G$‎, ‎$chi(g)neq 0$‎. ‎The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$‎, ‎is an undirected graph with‎ ‎vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G‎, ‎ tin T}$‎. ‎Let ${rm nv}(G)$ be the set‎ ‎of all non-vanishi...

متن کامل

Nilpotent Orbits and Commutative Elements

Let W be a simply-laced Coxeter group with generating set S, and let Wc denote the subset consisting of those elements whose reduced expressions have no substrings of the form sts for any non-commuting s; t 2 S. We give a root system characterization of Wc, and in the case where W corresponds to a nite Weyl group, show that Wc is a union of Spaltenstein-Springer-Steinberg cells. The latter is v...

متن کامل

Jacobi–tsankov Manifolds Which Are Not 2–step Nilpotent

There is a 14-dimensional algebraic curvature tensor which is Jacobi–Tsankov (i.e. J (x)J (y) = J (y)J (x) for all x, y) but which is not 2-step Jacobi nilpotent (i.e. J (x)J (y) 6= 0 for some x, y); the minimal dimension where this is possible is 14. We determine the group of symmetries of this tensor and show that it is geometrically realizable by a wide variety of pseudo-Riemannian manifolds...

متن کامل

Power-Commutative Nilpotent R-Powered Groups

If R is a binomial ring, then a nilpotent R-powered group G is termed power-commutative if for any α ∈ R, [gα, h] = 1 implies [g, h] = 1 whenever gα 6= 1. In this paper, we further contribute to the theory of nilpotent R-powered groups. In particular, we prove that if G is a nilpotent R-powered group of finite type which is not of finite π-type for any prime π ∈ R, then G is PC if and only if i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentationes Mathematicae Universitatis Carolinae

سال: 2015

ISSN: 0010-2628,1213-7243

DOI: 10.14712/1213-7243.2015.113